

# Nutrient and Sediment Cycling and Retention in **Urban Floodplain Wetlands**

Greg Noe, Cliff Hupp, Nancy Rybicki, Ed Schenk, and Jackie Batson

#### National Research Program, Reston VA



**Funded by USGS Chesapeake Priority Ecosystem Science** 

Floodplain nutrient and sediment retention

Floodplains are last location in watersheds for significant material retention before river loading into coastal waters

What are nutrient cycling and sediment deposition rates?

What are the controls?

What is the percent retention of river loads by floodplains?





### Coastal Plain floodplains trap large nutrient loads

Measured sedimentation fluxes in plots
Scaled to entire CP extent of floodplain
Compared to river load



|            | Median | Range        |
|------------|--------|--------------|
| Nitrogen   | 22%    | (5 to 150%)  |
| Phosphorus | 59%    | (14 to 587%) |
| Sediment   | 119%   | (53 to 690%) |
|            |        |              |



Noe and Hupp. 2009. Ecosystems.



## Hydrogeomorphic controls in floodplain ecosystems

Four dimensions of river corridors influence floodplain ecosystem processes through river-floodplain *hydrologic connectivity* 

This heterogeneity is critical to the prediction and scaling of floodplain effects on water quality



## Difficult Run Floodplain Study

measuring sediment and nutrient retention along lateral and longitudinal floodplain gradients in an urban, Piedmont watershed







### Urbanization influence on flooding



Hupp et al. *in review* 

## Difficult Run Floodplain Study

measuring sediment and nutrient retention along lateral and longitudinal floodplain gradients in an urban, Piedmont watershed



## **Ecosystem process measurements**

#### Mineralization







#### Sedimentation





#### Hydroperiod



**Bank erosion** 



### Annual net mineralization rates





Noe et al. in review

## Turnover of soil N and P pools

| Rate             | Areal<br>mineralization<br>(mmol m <sup>-2</sup> yr <sup>-1</sup> ) | Turnover rate<br>(mol mol <sup>-1</sup> yr <sup>-1</sup> ) | Turnover<br>time (yr) |
|------------------|---------------------------------------------------------------------|------------------------------------------------------------|-----------------------|
| P mineralization | 3.60                                                                | 0.0027                                                     | 369                   |
| N mineralization | 319                                                                 | 0.046                                                      | 22                    |

| % nitrification | 66% |
|-----------------|-----|
|-----------------|-----|



Noe et al. *in review* 

#### Sedimentation stimulates mineralization





Noe et al. in review

#### Plant uptake vs. mineralization





Rybicki et al. in prep.

#### Nutrient sedimentation rates





#### Geomorphic controls on sediment retention and loss



Site 0 Site 1 Site 2 Site 3 Site 4 Site 5



Hupp et al. *in review* 

## Historic mill dams and legacy sediment



Channel length (km)

Hupp et al. in review

## Urban, Piedmont floodplain is retentive







### Correlations among ecosystem processes





Nutrient and Sediment Cycling and Retention in Urban Floodplain Wetlands

#### Urban floodplain wetlands can still remove pollutants

- Despite legacy sediment, mill dams, and stormwater
- High nutrient and sediment inputs
- Efficient internal cycling of nutrients
- Coupled N and P biogeochemical processes
- High trapping rates relative to watershed losses





AGU Chapman Conference on Hydrogeomorphic Feedbacks and Sea Level Rise in Tidal Freshwater River Ecosystems Reston, Virginia, USA 13-16 November 2012

#### ABSTRACT DEADLINE: 12 July 2012 (23:59 ET)

Tidal freshwater rivers link watersheds with estuaries and affect the flux of carbon, nutrients, sediment, and freshwater from land to the ocean. However, climate change is continually altering tidal river ecosystems as tides advance inland and watershed inputs change. This Chapman Conference will generate synthesis of feedbacks between geomorphic, biogeochemical, and ecological processes in tidal rivers to better predict ecosystem changes in response to climate change.

www.agu.org/TidalRivers

